If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2+20x+1=0
a = 50; b = 20; c = +1;
Δ = b2-4ac
Δ = 202-4·50·1
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{2}}{2*50}=\frac{-20-10\sqrt{2}}{100} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{2}}{2*50}=\frac{-20+10\sqrt{2}}{100} $
| 193b=212.4 | | 2x+2x+8=3 | | -1/2(-3/2x+6x+1)=-3x | | 4/k=6/114 | | (3-7i)^2=0 | | Y=-4/5x+7 | | 10+×=5(1/5x+2) | | 10x•7/4•2=70 | | (x-4)(3x-2)=(x-4) | | N2+4n+3=0 | | 32=s-15 | | −18=3t | | 6=9/7d+5/8d-10 | | 3x^2+5×=8 | | 4(2x+7)=6x+10+2x+18 | | −11z=−66 | | -(7x-3)=-7+3x | | 7(y−72)=98 | | 37.5+x=25 | | -29=3c-77 | | 3x+24=56-5x | | -3(4x+3)+4(6x=+1)=43 | | 3x+2=-3+2 | | c-54/5=5 | | c−545= 5 | | 113/7x7=80 | | 8(h+3)=88 | | .33x+20=5 | | 15=2k+7 | | 6=3(n-6) | | 66=-6/5(s+3 | | 6(x+7)+(x+3)=7x+45 |